
Ray Foundations Certification Exam Guide

Certification Overview

The Ray Foundations Certification validates a candidate’s ability to understand and apply Ray’s core concepts, including

clusters, distributed primitives (tasks, actors, objects), and foundational libraries (Ray Data, Train, Tune, Serve). It is designed

for engineers who are beginning their journey with distributed AI systems and want to demonstrate essential skills with Ray.

Name: Ray Foundations Certification

Prerequisites: None

Level: Beginner

Target Audience: Data Engineers, ML Engineers, Platform/Infra Engineers

Format: Multiple-choice, single-answer questions

Purpose: Validate core understanding of Ray’s architecture, primitives, key libraries, and basic production practices.

Domain Weight (%) Recommended Reading Recommended Courses

Ray Clusters/Architecture 10% Overview, Key Concepts

Ray Core 20%
Overview, Key Concepts, Tasks, Actors,

Objects

Ray Data 20%

Overview, Quickstart, Key Concepts, Batch

Inference, Loading Data, Inspecting Data,

Transforming Data, Shuffling Data, Saving

Data

Batch Inference with Ray Data, Data

Processing with Ray Data

Ray Train 20%

Overview, PyTorch Guide, Data Loading and

Preprocessing, Configuring Scale and GPUs,

Monitoring and Logging Metrics, Saving and

Loading Checkpoints

Distributed Training with Ray Train

Ray Tune 10%

Overview, Quickstart, Key Concepts,

Running Basic Experiments, Search Spaces,

Resources

Ray Serve 20%
Overview, Quickstart, Key Concepts, Model

Composition, Autoscaling
Online Model Serving with Ray Serve

https://docs.ray.io/en/latest/cluster/getting-started.html
https://docs.ray.io/en/latest/cluster/key-concepts.html#cluster-key-concepts
https://docs.ray.io/en/latest/ray-core/walkthrough.html
https://docs.ray.io/en/latest/ray-core/key-concepts.html
https://docs.ray.io/en/latest/ray-core/tasks.html
https://docs.ray.io/en/latest/ray-core/actors.html
https://docs.ray.io/en/latest/ray-core/objects.html
https://docs.ray.io/en/latest/data/data.html
https://docs.ray.io/en/latest/data/quickstart.html
https://docs.ray.io/en/latest/data/key-concepts.html
https://docs.ray.io/en/latest/data/batch_inference.html
https://docs.ray.io/en/latest/data/batch_inference.html
https://docs.ray.io/en/latest/data/loading-data.html
https://docs.ray.io/en/latest/data/inspecting-data.html
https://docs.ray.io/en/latest/data/transforming-data.html
https://docs.ray.io/en/latest/data/shuffling-data.html
https://docs.ray.io/en/latest/data/saving-data.html
https://docs.ray.io/en/latest/data/saving-data.html
https://courses.anyscale.com/courses/batch-inference-with-ray-data
https://courses.anyscale.com/courses/data-processing-with-ray-data
https://courses.anyscale.com/courses/data-processing-with-ray-data
https://docs.ray.io/en/latest/train/train.html
https://docs.ray.io/en/latest/train/getting-started-pytorch.html
https://docs.ray.io/en/latest/train/user-guides/data-loading-preprocessing.html
https://docs.ray.io/en/latest/train/user-guides/data-loading-preprocessing.html
https://docs.ray.io/en/latest/train/user-guides/using-gpus.html
https://docs.ray.io/en/latest/train/user-guides/monitoring-logging.html
https://docs.ray.io/en/latest/train/user-guides/checkpoints.html
https://docs.ray.io/en/latest/train/user-guides/checkpoints.html
https://courses.anyscale.com/courses/distributed-training-with-ray-train
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/getting-started.html
https://docs.ray.io/en/latest/tune/key-concepts.html
https://docs.ray.io/en/latest/tune/tutorials/tune-run.html
https://docs.ray.io/en/latest/tune/tutorials/tune-search-spaces.html
https://docs.ray.io/en/latest/tune/tutorials/tune-resources.html
https://docs.ray.io/en/latest/serve/index.html
https://docs.ray.io/en/latest/serve/getting_started.html
https://docs.ray.io/en/latest/serve/key-concepts.html
https://docs.ray.io/en/latest/serve/model_composition.html
https://docs.ray.io/en/latest/serve/model_composition.html
https://docs.ray.io/en/latest/serve/autoscaling-guide.html
https://courses.anyscale.com/courses/online-model-serving-with-ray-serve

Learning Objectives

This certification will test for knowledge of these key concepts:

Ray Clusters

Describe the components of a Ray cluster (head node, worker nodes, GCS, autoscaler).

Explain how the Ray autoscaler decides to scale up or down.

Explain how Ray implements distributed memory.

Describe Ray’s distributed scheduler.

Identify the responsibilities of the Ray head node.

Demonstrate knowledge of the different options for deploying Ray clusters.

Ray Core

Identify which Ray primitive (tasks, actors) is most appropriate for a given use case.

Explain how Ray schedules and retries tasks under different conditions.

Demonstrate understanding of actor handles and how they are used to interact with actors across a cluster.

Describe how actor methods are executed, scheduled, and retried.

Explain how Ray's object store enables distributed memory sharing.

Demonstrate how to use placement groups for resource-aware execution strategies.

Explain how to specify and manage runtime dependencies in Ray.

Ray Data

Identify when Ray Data is an appropriate tool.

Explain Ray Data’s lazy execution model and how it optimizes plans.

Demonstrate how Ray Data ingests data from different sources such as S3, GCS, and local files.

Differentiate between local and global shuffle operations in Ray Data.

Explain how to specify resources for different stages in a Ray Data pipeline.

Interpret code that uses Ray Data’s streaming batch APIs (e.g.).

Demonstrate how Ray Data saves a dataset to persistent storage.

read, map_batches, write

Ray Tune

Explain the benefits of using Ray Tune for scalable hyperparameter tuning.

Demonstrate basic Ray Tune API usage for hyperparameter tuning.

Define search spaces using Ray Tune's , etc.

Explain the role of schedulers and search algorithms in Ray Tune.

Demonstrate resource-aware tuning using the method.

tune.choice, tune.uniform

tune.with_resources

Ray Train

Explain when and why to use Ray Train.

Demonstrate how to orchestrate distributed training of a PyTorch model with Ray Train’s API.

Demonstrate how to configure and launch a Ray Train run.

Explain checkpointing using and .

Identify when and how to integrate Ray Data with Ray Train.

Trainer

train.get_checkpointtrain.report

Explain how Ray Data and Ray Train handle data sharding across workers.

Demonstrate techniques for ensuring reproducibility in Ray Train experiments.

Ray Serve

Explain when and why to use Ray Serve.

Demonstrate how to deploy an application using the Ray Serve API with the decorator.

Demonstrate how to specify resources (CPU, GPU, memory) for Ray Serve deployments.

Explain what ingress deployments are and how they are used.

Demonstrate how to integrate FastAPI with Ray Serve for request validation and API management.

Demonstrate how to use Ray Serve to build multi-model or multi-step inference pipelines.

Explain how autoscaling works in Ray Serve.

@serve.deployment

Sample Questions

The following sample questions illustrate the format and style of the exam; they are not comprehensive.

Q. What is one benefit of using Ray Train’s Trainer API for distributed deep learning?

It automatically converts all models to use the ONNX runtime

It handles orchestration of distributed workers, fault tolerance and integrates with Ray Data for data sharding.

It replaces the need for distributed training libraries like PyTorch.

It always guarantees model convergence regardless of the hardware or training configuration.

Q. You’re running distributed training using Ray Train with four workers on GPU nodes. Halfway through the training, one
of the workers crashes due to a transient hardware issue. Which of the following is true, assuming checkpointing was
correctly implemented?

The entire job must be restarted from the beginning, as Ray Train does not support partial recovery.

Ray Train will automatically retry the training run by restoring state from the most recent checkpoint assuming you set

 appropriately.

Training will continue on the remaining workers without restarting.

The failed worker is replaced with a redundant replica already running on standby.

max_failures

Exam Logistics

Duration: 120 minutes

Language: English

Number of Questions: 60

Passing Score: 70%

Delivery Method: Online

